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Abstract

1. Diisocyanates are highly reactive electrophiles utilized in the manufacture of a wide 

range of polyurethane products and have been identified as causative agents of 

occupational allergic respiratory disease. However, in spite of the significant 

occupational health burden associated with diisocyanate-induced asthma, the 

mechanism of disease pathogenesis remains largely unknown.

2. To better understand the fate of inhaled diisocyanates, a nose-only aerosol exposure 

system was constructed and utilized to expose a BALB/c mouse model to an aerosol 

generated from 4,4’-methylene diphenyl diisocyanate (MDI). Tissue and 

bronchoalveolar lavage samples were evaluated 4 and 24 h post-exposure for evidence 

of diisocyanate-protein haptenation, and a label-free quantitative proteomics strategy 

was employed to evaluate relative changes to the protein content of the cellular fraction 

of the lavage fluid.

3. Following MDI aerosol exposure, expression of the number of proteins with 

immunological or xenobiotic metabolism relevance is increased, including 

endoplasmin, cytochrome P450 and argininosuccinate synthase. Western blot analysis 

indicated MDI-conjugated protein in the lavage fluid, which was identified as serum 

albumin.

4. Tandem mass spectrometry analysis of MDI-albumin revealed MDI conjugation occurs 

at a dilysine motif at Lys525, as well as at a glutamine-lysine motif at Lys414, in good 

agreement with previously published in vitro data on diisocyanate-conjugated serum 

albumin.
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Introduction

Diisocyanates are low molecular weight chemicals utilized as cross-linkers in polyurethane 

production. 4,4′-methylene diphenyl diisocyanate (MDI) is the most widely used 

diisocyanate, accounting for more than 60% of the global diisocyanate market (Allport et al., 

2003). MDI is widely used in the manufacture of such products as rigid polyurethane spray 

foam insulation, truck bed liners, wood products and adhesives. Because of its low vapor 

pressure (5 × 10−6 mm Hg), MDI presents less of an inhalation hazard than the more volatile 

diisocyanates toluene diisocyanate (TDI) or hexamethylene diisocyanate (HDI); however, 

MDI is a potent lung and dermal sensitizer and a major cause of occupational asthma 

worldwide (NIOSH, 2004). This low volatility has, in part, driven the industry towards the 

use of the “safer” MDI rather than the more volatile diisocyanate, TDI. However, in many 

applications, MDI is heated and/or aerosolized via a spray gun, thus creating respirable 

vapor and/or aerosols. Furthermore, many hot applications and thermal processes such as 

fires can release free MDI fumes from products. However, after heating, MDI tends to 

recondense in the air at ambient temperatures (Karoly et al., 2004). Because MDI 

hydrolyzes slowly in the atmosphere (the half-life of MDI in the air is 0.92 d), exposures to 

aerosolized MDI in the workplace are likely to be to small particulates containing free 

isocyanate. The major occupational hazards to workers from MDI exposure are assumed to 

be MDI liquid, vapor, aerosol and MDI-coated particles such as wood dust (Woellner et al., 

1997).

Early recognition of occupational asthma and timely control of exposures has been 

associated with a lower risk of chronic irreversible respiratory effects, and biological 

monitoring of workers exposed to diisocyanates has been recommended (Wang & Petsonk, 

2004). Although diisocyanate asthma is similar to other type I immune hypersensitivity 

disorders, in that asthmatics generally do not experience symptoms the first time they are 

exposed, and that repeated exposures over months and years tend to result in worsening 

symptoms, only a fraction of persons (44–55%) that develop diisocyanate asthma exhibit 

allergen-specific IgE. This complicates diagnosis in sick workers, as well as proactive 

screening and surveillance (Wisnewski & Jones, 2010). An alternative hypothesis is that 

repetitive cycles of injury and repair and oxidative stress contribute to diisocyanate asthma 

pathogenesis. Observation of “reactive airway disease syndrome” and asthma immediately 

following high dose exposures support the role of cytotoxicity in diisocyanate 

hypersensitivity with sensitization and asthma as secondary phenomena (Leroyer et al., 

1998).

Although the burden of MDI-induced respiratory disease is well established, the molecular 

mechanism(s) of disease pathogenesis are poorly understood, in large part due to uncertainty 

regarding the antigenic form MDI takes in vivo (Wisnewski et al., 2010). The best current 

understanding of MDI toxicity involves MDI acting as a chemical hapten which reacts to 
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covalently modify one or more “self” proteins at the site of exposure. This covalent 

modification causes antigenic changes in the structure/conformation of the native protein 

and subsequently elicits an immune response in the host. Which of these self-proteins are 

critical to pathogenesis have not been determined, although keratins (Hulst et al., 2015; 

Nayak et al., 2014) and serum albumin have been suggested. Several researchers have 

demonstrated by either immunological methods (Jin et al., 1993; Johannesson et al., 2001, 

2004) or protein hydrolysis (Kumar et al., 2009; Sabbioni et al., 2010) that serum albumin 

can be modified in vivo by diisocyanates. However, none of these studies attempted to 

identify sequence-specific information on the site of modification. Previous studies in our 

laboratory have developed proteomics tools, in particular tandem mass spectrometry 

(Hettick et al., 2009) to investigate the reactive chemistry of the aromatic diisocyanates TDI 

(Chipinda et al., 2011; Hettick & Siegel, 2011, 2012; Hettick et al., 2012) and MDI (Hettick 

& Siegel, 2012; Mhike et al., 2013) in vitro with human serum albumin. Although these 

studies and those in other laboratories (Wisnewski et al., 2010) have identified a subset of 

likely biomarkers of diisocyanate exposure on serum albumin, thus far, attempts to identify 

site-specific albumin conjugation in vivo have failed (Luna et al., 2014).

A better understanding of the molecular basis for diisocyanate asthma is critical to 

improving biomonitoring, surveillance and patient outcomes. An international 

multidisciplinary team of researchers, clinicians and stakeholders met in 2013 to establish 

knowledge gaps and research priorities for isocyanates (Lockey et al., 2015). Among the 

identified research priorities were the following toxicology and biomarker-focused goals: 

[A] develop approaches to better understand the connections between isocyanate uptake, 

metabolism, immunogenicity and asthma pathogenesis, [B] further develop animal models 

to investigate the effects of different formulations, doses and routes of isocyanate exposure, 

[C] identify novel biomarkers of exposure, including biomarkers that identify the route of 

exposure (e.g. airway versus skin exposure), and also better biomarkers of effect (e.g. 

isocyanate sensitization and asthma). The current study is directly responsive to these stated 

research priorities and seeks to fill knowledge gaps in our current understanding of 

diisocyanate asthma by developing a murine model of MDI aerosol exposure. To better 

characterize the biochemical fate of inhaled diisocyanate particulates, a nose-only aerosol 

exposure system was constructed and utilized to expose a BALB/c mouse model to an 

aerosol generated from MDI. Tissue and bronchoalveolar lavage samples were evaluated 4 

and 24 h post-exposure for identification and characterization of in vivo-formed MDI-

protein haptenated complexes. Furthermore, a tandem mass spectrometry-based label-free 

quantitative proteomics strategy was employed to evaluate relative changes in protein 

expression of the cellular fraction of the lavage fluid to gain insight into changes in the 

cellular processes in the lung following MDI aerosol exposure.

Materials and methods

Chemicals and reagents

HPLC grade acetonitrile, HPLC grade formic acid, HPLC grade acetone, 3 Å molecular 

sieve (4–8 mesh), Tris-buffered saline, phosphate-buffered saline (PBS), Tween-20, bovine 

serum albumin, mouse serum albumin, porcine trypsin (proteomics grade), ammonium 
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bicarbonate, tributylphosphine, iodoacetamide, trifluoroacetic acid (TFA) and 98% MDI 

were acquired from Sigma-Aldrich (St. Louis, MO). Radioimmunoprecipitation assay buffer 

(150 mm NaCl, 50 mm Tris-HCl [pH 7.5], 5.0 mm EDTA, 1.0 mm NaF, 1% sodium 

deoxycholate, 1% NP-40, 0.1% SDS and 0.25 mm phenylmethylsulfonyl fluoride), Imperial 

protein stain, T-PER tissue lysis buffer and 1-Step Ultra TMB blotting solution were 

acquired from Thermo Fisher Scientific (Waltham, MA). [Glu]1-Fibrinopeptide B was 

acquired from Protea Biosciences (Morgantown, WV). Laemmli sample buffer (62.5 mm 

Tris-HCl [pH 6.8], 2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.004% bromphenol 

blue) was acquired from BioRad (Hercules, CA). Horseradish peroxidase conjugated 

antimouse IgG secondary antibody was acquired from Promega (Madison, WI). Fatal-Plus® 

(sodium pentobarbital) euthanasia solution was acquired from Vortech Pharmaceuticals, Ltd 

(Dearborn, MI). Mouse IgG1 isotype control clone MOPC-21 was acquired from BD 

Biosciences (San Jose, CA). Anti-MDI monoclonal antibody DA5 was prepared in house 

and has been previously described (Wisnewski & Liu, 2013). Dry acetone was prepared by 

incubating 10 ml HPLC grade acetone on 3 Å molecular sieve for a minimum of 24 h to 

adsorb water.

Animals

Female BALB/c mice were used in the murine models. BALB/c are an albino strain 

commonly used in investigations of cancer and immunology. This strain has been routinely 

used in our laboratory (Lemons et al., 2014; Nayak et al., 2014) and that of other researchers 

(Herrick et al., 2002, 2003; Wisnewski et al., 2015) to investigate diisocyanate allergy. Mice 

were purchased from Taconic (Germantown, NY) at 6–8 weeks-of-age. Upon arrival, the 

animals were allowed to acclimate for a minimum of 5 d and were randomly assigned to a 

treatment group. The animals were housed at a maximum of five/cage in ventilated plastic 

shoebox cages with hardwood chip bedding. NIH-31 modified 6% irradiated rodent diet 

(Teklad, Envigo, East Millstone, NJ) and tap water were provided from water bottles, ad 
libitum. Each animal cage was supplied with a 2.5 cm OD × 25 cm section of poly(vinyl 

chloride) pipe to facilitate acclimation of the animals to the restraint device. The animal 

facility temperature was maintained at 68–72 °F and the relative humidity between 36% and 

57%. A light/dark cycle was maintained at 12-h intervals. Mice were euthanized at 4 or 24 h 

post-exposure. Mice were euthanized via intraperitoneal injection of sodium pentobarbital 

(200 mg/kg) followed by exsanguination upon a negative response to a toe pinch. Lungs 

were perfused with 10 ml icecold PBS, and bronchoalveolar lavage fluid (BALF) collected 

via 3 × 1 ml ice-cold PBS lavages. Trachea and lung were surgically removed and stored at 

−80 °C. Animals were housed in the Association for Assessment and Accreditation of 

Laboratory Animal Care (AAALAC)-accredited NIOSH animal facility, and all procedures 

were performed in accordance with an animal protocol approved by the Institutional Animal 

Care and Use Committee.

Aerosol generation and exposure

Prior to exposures, mice were acclimated to the nose-only restraint device with stays of 

increasing durations of 15, 30 and 60 min on consecutive days. Animal exposures were 

performed using an in-house constructed nose-only inhalation system, as depicted in Figure 

1. Due to the tendency of MDI to hydrolyze to the dianiline or mixed polymerization 
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products, even under proper storage conditions, we have determined that it is essential to 

ensure the relative purity of the MDI used for both conjugation and inhalation exposures. 

Although the monomeric MDI versus MDA can be assessed by gas chromatography/mass 

spectrometry (GC/MS), we have empirically determined that a simple qualitative assay is 

sufficient. Pure MDI will rapidly dissolve in dry acetone to yield a clear solution; however, 

degraded MDI will dissolve slowly or not at all, or will dissolve to yield a milky solution in 

dry acetone. The quality of the MDI was assessed prior to all experiments in this report. 

Immediately prior to exposures, MDI is twice-milled for 60 s in an electric laboratory 

grinder to produce a fine powder. The powder is packed into the large container of the 

Wright Dust Feeder (CH Technologies, Westwood, NJ) using a Benchtop Hydraulic Press to 

a pressure of 200 kg/cm2. Dry, filtered house air is supplied to the dust feeder, which is 

operated with the large scraping head at the maximum speed of 6 rpm. Diluent air and 

heated, humidified air are supplied as needed to maintain 50 ± 5% RH and 22 ± 2 °C. The 

aerosol-rich and diluent air are combined prior to entering a 20 l elutriation chamber, the 

exhaust of which is delivered to the inner plenum of the Nose-Only Inhalation Exposure 

System (NOIES, CH Technologies) where it is uniformly distributed to each animal through 

a trumpet at a flow rate of 0.7 L/min, as measured by a mass flow meter (GFM17, 

AALBORG, Orangeburg, NY) attached to one port of the manifold. The NOIES manifold 

can accommodate up to 12 animals per exposure. However, for the current study, five 

animals were exposed per experiment, and five ports of the manifold were plugged with 

rubber stoppers. The remaining two ports on the manifold were reserved for the mass flow 

meter and portable dust monitor (Series 1.100, GRIMM Aerosol Technik GmbH, Ainring, 

Germany), respectively. Concentration and particle size distribution of the MDI aerosol at 

the sampling aperture was monitored with the portable dust monitor. The exposure system 

was completely disassembled and thoroughly cleaned in between exposures. For safety, the 

entire aerosol exposure system is contained within a chemical fume hood. A single MDI 

aerosol exposure was performed for 60 min for each exposure group.

Preparation of MDI-albumin conjugate

MDI-mouse serum albumin conjugate (20:1 mol:mol ratio) was prepared as a positive 

control for both immunoprecipitation (IP) and Western blot experiments. A 10 ml conjugate 

stock solution was prepared by dissolving 0.5 mg mouse serum albumin in 9.7 ml distilled 

deionized water, to which was added 0.038 mg MDI in 300 µl dry acetone. The MDI/

acetone solution was added slowly, in a dropwise fashion with constant mixing. The 

conjugate was used without further purification.

Tissue sample preparation

Lungs and tracheas were placed in 2.0 ml siliconized Eppendorf microfuge tubes (Fisher) 

with a 5 mm stainless steel bead (Qiagen, Valencia, CA) and 1.0 ml T-PER tissue lysis 

buffer. Tissues were disrupted by bead beating on a Tissuelyser (Qiagen) for three cycles of 

2 min at 30 Hz. In between bead beating cycles, samples were cooled on ice for 3 min. 

Following bead beating, insoluble material was pelleted by centrifuging the samples for 20 

min at 21 000× g at 4°C. The supernatant was removed and protein concentration 

determined at 280 nm using a Nanodrop 2000 (Thermo Scientific). The insoluble pellet was 
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further fractionated by adding 100 µl Laemmli buffer and vigorously mixing at room 

temperature.

SDS-PAGE and Western blot

Protein samples (20 µg) were separated by SDS-PAGE on 4–20% 1.5 mm precast gels 

(BioRad) at 100V for 1.5 h. SDSPAGE bands were visualized with Imperial stain according 

to manufacturer’s instructions prior to downstream proteomic analysis. Western blot was 

performed by transferring SDS-PAGE separated protein bands to a 0.2 µm nitrocellulose 

membrane (BioRad) at 350 mA for 1 h at 4 °C. The membrane was washed three times for 5 

min with 10 ml of tris-buffered saline containing 0.05% Tween-20 (TBST) on an orbital 

shaker at room temperature. Non-specific binding to the membrane was blocked by 

incubating with 10 ml 5% non-fat milk in TBST (W/V) for 1 h at RT. Following three five 

min washes with 10 ml TBST, the membrane was incubated with 0.5 µg/ml of DA5 anti-

MDI monoclonal antibody in 5% BSA/TBST (W/V) at 4 °C overnight. Following primary 

antibody incubation, the membrane was washed three times with 10 ml TBST for 5 min and 

subsequently incubated with HRP-conjugated anti-mouse IgG secondary antibody at 1:5000 

dilution in 5% non-fat milk/TBST (W/V) for 1 h at RT. Following secondary antibody 

incubation, the membrane was washed three times with 10 ml TBST for 5 min and the MDI-

conjugated proteins were developed by incubation with 15 ml of Pierce™ 1-Step Ultra TMB 

Blotting Solution at RT.

In-gel trypsin digestion

Following SDS-PAGE, either specific bands of interest or entire gel lanes were excised and 

cut into 38 identical 1.5 × 5 mm bands using the OneTouch GridCutter (Gel Company, San 

Francisco, CA). Each band was deposited in a siliconized 0.6 ml microcentrifuge tube for in-

gel trypsin digestion. All incubations were performed at 37 °C with shaking at 1000 rpm 

unless otherwise noted. Bands were destained twice for 30 min in 200 µl 200 mm 

NH4HCO3/40% acetonitrile, followed by dehydration for 30 min in a Savant DNA 

SpeedVac centrifugal concentrator (Thermo Scientific) at 43 °C. Bands were rehydrated with 

100 µl 20 mm tributylphosphine in 25 mm NH4HCO3 and incubated for 15 min to reduce 

disulfide bonds. Cysteine residues were alkylated by incubating bands with 100 µl 40 mm 

iodoacetamide in 25 mm NH4HCO3 for 30 min. Bands were then washed twice with 200 µl 

25 mm NH4HCO3 followed by one wash with 200 µl 25 mm NH4HCO3/50% acetonitrile. 

Bands were dehydrated 30 min in the centrifugal concentrator at 43 °C and rehydrated with 

20 µl 20µg/ml trypsin solution in 40 mm NH4HCO3/9% acetonitrile at RT for 5 min. 

Following addition of 50 µl 40 mm NH4HCO3/9% acetonitrile, bands were allowed to digest 

overnight at 37 °C with shaking at 1000 rpm. After digestion, the supernatant was acidified 

by addition of 10 µl of 10% (vol) TFA to inactivate trypsin and taken immediately for ultra-

performance liquid chromatography/qTOF-MSMS analysis.

Ultra-performance liquid chromatography

Enzymatic peptides were separated by UPLC using a nanoACQUITY system (Waters, 

Milford, MA) consisting of a sample manager, binary solvent manager and an auxiliary 

solvent pump. Samples were maintained at 4 °C in the sample manager prior to injection of 

a 4 µl aliquot which was trapped/desalted on a 5 µm SymmetryC18 (180 µm × 20 mm) 
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trapping column with 95/5 A/B (A:0.1% formic acid; B:0.1% formic acid in acetonitrile) at 

a flow rate of 15 µl/min for 1 min. Analytical separation was performed on a 1.7 µm 

BEH130 C18 (75 µm × 150 mm) analytical column utilizing gradient elution at a flow rate of 

300 nl/min and a gradient of 95/5 to 20/80 A/B over 50 min. The analytical column was 

maintained at 35 °C at all times.

Tandem mass spectrometry

The eluent from the UPLC system was directed to the nanoelectrospray source of a Waters 

SYNAPT MS quadrupole time-of-flight (qTOF) mass spectrometer. Positive ion 

nanoelectrospray was performed utilizing 10 µm PicoTip (Waters) emitters held at a 

potential of +2.5 kV. The cone voltage was held constant at +40V for all experiments. Dry 

N2 desolvation gas was supplied to the instrument at 110 psi via a nitrogen generator 

(NitroFlowLab, Parker Hannifin Corp., Haverhill, MA). [Glu]1-Fibrinopeptide B (100 

fmol/µl in 90/10 A/B) was supplied to an orthogonal reference probe and the [M+2H]2+ ion 

(m/z=785.84265 u) measured as an external calibrant at 30 s intervals. Collision-induced 

dissociation was performed utilizing ultra-high purity argon as the collision gas. Spectra 

were acquired in a multiplexed or “MSe” fashion (Chakraborty et al., 2007). Briefly, 

alternating 1-s mass spectra are acquired. The first spectrum acquired at low (6 eV) collision 

energy allows high mass accuracy precursor ion mass measurement. The second spectrum 

acquired at high (25–40 eV ramp) collision energy allows high mass accuracy fragment ion 

mass measurement. The fragment ion spectra may be temporally correlated with precursor 

spectra post-run. This method of data acquisition allows all precursor ions to be fragmented 

and analyzed, rather than so-called “data dependent acquisition” methods that require real-

time decisions to be made on which ions to select for fragmentation, and which may miss 

low-abundance precursor ions. MSe mass spectra were acquired from 5 to 60 min during the 

UPLC gradient.

Data analysis

Proteins were identified using ProteinLynx Global Server (PLGS) v2.5 (Waters) to search 

the mouse (Mus musculus) reference proteome available from UniProt (http://

www.uniprot.org/proteomes/UP000000589). The database search was constrained as 

follows: mass error <25 ppm, protein molecular weights 0–250 kDa, digest reagent trypsin, 

missed cleavages 0–1 and carbamidomethyl cysteine as a fixed modification. The results of 

the PLGS search were exported to create a Microsoft Office Excel database for label-free 

quantitative analysis. Only proteins identified in each of three technical replicates were 

carried through to the final dataset. Label-free quantitation was performed by calculating the 

normalized spectral abundance factor (NSAF) for each protein, as given by Equation (1):

(1)

The NSAF for a protein k is the number of spectral counts (SpC, the total number of MS/MS 

spectra) identifying a protein k, divided by the protein’s length (L), divided by the sum of 

SpC/L for all N proteins in the dataset (Zybailov et al., 2006). Some mass spectra of interest 
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were further analyzed using BioPharmaLynx v. 1.2 (Waters), a software program for 

comparative analysis of peptide mass maps and identification of sites of modification on 

known protein sequences. Default peptide mass map analysis criteria of 30 ppm mass error 

in both low and high collision energy mode were specified. Trypsin was specified as the 

digestion enzyme, and two missed cleavages were allowed. The submitted protein sequence 

was taken from P07724, “serum albumin, Mus musculus” (www.uniprot.org/uniprot/

P07724) and the signal and propeptides (residues 1–24) removed. Custom modifiers were 

created for two bound forms of MDI. The first (MDI, C15H10N2O2, m/z=250.0742 u) 

represents MDI with both isocyanate moieties bound to a peptide via urea bonds. The 

second (MDI*, C14H12N2O, m/z=224.0950 u) represents one isocyanate moiety bound to a 

peptide via a urea bond, while the second isocyanate moiety is hydrolyzed to the primary 

amine. Identification of a potential MDI binding site proceeded via a rigorous procedure that 

involved the following steps: (1) Observation of a potential peptide-MDI conjugation 

product with less than 30 ppm m/Δm mass error in the exposed sample peptide mass map. 

(2) Comparison of exposed and control sample peptide mass maps from serum albumin 

shows that observed m/z and chromatographic retention time are unique to exposed sample. 

(3) MS/MS data contains bn-and yn-type ions consistent with the assigned sequence and 

modifier.

Results and discussion

Identification of MDI-conjugated protein following exposures

Groups of five female BALB/c mice were exposed to either house air or MDI aerosol using 

the NOIES apparatus. MDI concentrations of 4580 ± 1497 µg/m3 were achieved and 

maintained for each 60 min exposure. Of the total MDI particle load, roughly half, or 2243 

± 903.8 µg/m3, were of diameter less than 3.0 µm. Particles of less than 3.0 µm have an 

enhanced probability of deposition within the lower respiratory tract of the mouse (50–

80%), with alveolar deposition approaching a maximum at diameters of approximately 1.0 

µm (5–10%) (Schlesinger, 1985). The NOIES exposure apparatus was chosen for these 

experiments because it is specifically designed to expose only the breathing zone of the 

animals to the test article, MDI. Exposures were well tolerated by the animals, with no signs 

of visible distress or eye irritation observed. Upon removal from the NIOES apparatus, the 

animals immediately resumed normal feeding and grooming behaviors. The NIOSH 

recommended exposure limit (REL) for MDI is 0.05 mg/m3 (time-weighted average for a 10 

h workday, 40-h workweek), so the current exposure represents the total MDI burden of 

approximately 100 h at the REL, or 10 work days. These exposures are approximately 15-

fold below the immediately deadly to life and health threshold of 75 mg/m3 (NIOSH, 1997).

Immediately following euthanasia, lungs were perfused and lavaged, then lungs and trachea 

of the mice were surgically removed and mechanically disrupted by bead beating in tissue 

lysis buffer. Both the buffer-soluble and -insoluble fractions of the tissue lysate were 

analyzed by SDS-PAGE and Western blot using DA5 anti-MDI monoclonal antibody; 

however, both tissues tested negative for MDI-conjugated protein (see Supplemental Figures 

S1–S3). Subsequently, both the cell-free supernatant and the cellular fraction of the BALF 
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were examined by SDS-PAGE anti-MDI Western blot, and the results are presented in 

Figure 2.

In both the cell-free supernatant and the cellular fraction of the BALF, the only bands which 

appear in the air-exposed control group are at approximately 25 and 50 kDa. These bands 

were excised, reduced, alkylated and subjected to in-gel trypsin digestion followed by 

UPLC-qTOF-MS/MS and were identified as IgG light and heavy chains, respectively, and 

are Western-blot positive as a result of the anti-mouse IgG secondary antibody utilized in the 

assay. In the MDI-exposed groups, however, a strong anti-MDI reactive band is observed at 

approximately 60 kDa which is absent in the air-exposed control group (indicated by an 

arrow in Figure 2). Following tandem mass spectrometry, these bands were identified as 

serum albumin. Interestingly, a high molecular weight “smear” of reactive protein is 

observed in the cellular fraction and positive control, but not the BALF supernatant (See 

dashed box in Figure 2). Similar streaking behavior has been well documented in in vitro 
experiments where serum albumin is exposed to relatively high (>10:1 diisocyanate:protein 

mole ratio) concentrations of diisocyanate, where a wide variety of mixed polymers are 

formed. Protein monomers may be crosslinked by a diisocyanate molecule, and diisocyanate 

may polymerize at one or more reactive amino acid sites on the protein (Hettick & Siegel, 

2011, 2012; Hettick et al., 2012; Mhike et al., 2013). The positive control MDI-albumin 

conjugate in Figure 2 was prepared at a 20:1 MDI:protein ratio and demonstrates this 

behavior. In previous in vitro experiments, well-defined MDI-conjugated protein bands 

(such as observed in Figure 2) were only observed when diisocyanate:protein ratios are low 

(mol protein > mol diisocyanate) or when diisocyanate conjugation was mediated by 

transcarbamylation via glutathione (Wisnewski et al., 2011). Diisocyanates react reversibly 

with thiols, and glutathione is a tripeptide thiol antioxidant that is present in the lower 

respiratory tract at concentrations of more than 100 µM, and has been suggested to be the 

primary reactant of inhaled isocyanates (Lange et al., 1999) in a process which may be 

protective against MDI-protein conjugation (Wisnewski et al., 2005). It is not immediately 

evident why the cellular fraction of the BALF exhibits a high-molecular weight distribution 

of conjugated protein absent from the cell-free BALF supernatant, which is exposed to the 

highest load of MDI upon exposure. It is possible that inhaled MDI is reacting with 

glutathione (a reaction that is kinetically favored) followed by transcarbamylation of a single 

diisocyanate to albumin. Alternatively, cells may be more likely to take up highly-modified 

(damaged) proteins, leaving albumins that are only lightly modified and that more closely 

resemble self-protein. Finally, highly modified proteins could become insoluble, precipitate 

and be lost in the pellet. If MDI were crossing the cell barrier in an unreacted state, it seems 

reasonable that other intracellular proteins would be modified; however, upon excision and 

digestion of the high molecular weight “smear” observed in Figure 2 “+4”, serum albumin is 

the only protein identified upon subsequent tandem MS analysis.

Tandem mass spectrometry analysis was performed on the control and MDI-conjugated 

serum albumin bands excised from SDS-PAGE gels. Although more than 100 peptides were 

identified in both the control and exposed albumin bands (accounting for 100% and 99.8% 

sequence coverage, respectively), comparatively few demonstrated direct evidence of MDI 

conjugation. Previous studies in our laboratory have shown that even proteins extensively 

modified with diisocyanate yield comparatively poor tandem mass spectrometry data when 
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compared to unmodified proteins (Hettick & Siegel, 2011, 2012; Hettick et al., 2012; Mhike 

et al., 2013). This is most likely due to the signal dilution that occurs when the limited ion 

current from a single tryptic peptide is divided among many potential reaction channels (e.g. 

inter- and intra-molecular crosslinking, hydrolysis of the isocyanate, polymerization of the 

isocyanate, etc.). In spite of this systematic limitation, we are able to determine two 

conjugation sites on serum albumin, Lys414 and Lys525. Both Lys414 and Lys525 are 

conserved in human albumin and have been previously identified as putative binding sites 

for both TDI and MDI based on in vitro tandem mass spectrometry studies (Hettick & 

Siegel, 2011, 2012).

Both of these sites are part of highly conserved albumin dilysine motifs, although in mouse, 

Lys414 occurs next to glutamine at position 413, rather than lysine (see Figure 3 for a 

sequence alignment between mouse and human serum albumin). These dilysine motifs have 

been previously hypothesized as possible target sites for diisocyanate conjugation in vitro 
(Hettick et al., 2012; Wisnewski et al., 2013) and human serum albumin conjugated at 

dilysine motifs has been recognized by serum of workers sensitized to MDI, suggesting this 

species may be immunologically active (Wisnewski et al., 2010).

Figure 4 presents a high-resolution peptide mass map mirror display comparing enzymatic 

peptides generated from either air-exposed control (top) or MDI-exposed (4-h post exposure, 

bottom) mouse serum albumin. This visualization tool reflects the control and exposed MS 

data about the m/z axis, allowing direct comparison of the peptide data. This data 

demonstrates that the unmodified tryptic peptide T61-62 (KQTALAELVK, m/z 1100.66 u) 

is observed for the control BALF, but not in the MDI-exposed BALF (Figure 4, Inset 1). 

However, m/z 1324.66 u representing the modified T61-62* peptide (K*QTALAELVK) is 

observable in the MDI-exposed BALF but not the control (Figure 4, Inset 2). This mass is 

consistent with the peptide [M+MDI*+H]+ ion, where MDI* (m/z 224.0950 u) is covalently 

bound to the amine nitrogen of the Lys525 sidechain. Furthermore, a second modified form 

of the T61-62* peptide is observed at m/z 1350.7421 u, consistent with an intramolecular 

crosslink formed by MDI (m/z 250.0742 u). Observation of the modified b2* fragment ion at 

m/z 507.24 u suggests that MDI forms an intramolecular crosslink between the amine 

groups on the sidechains of lysine and glutamine. A modified form of tryptic peptide T47-48 

is observed (YTQKAPQVSTPT, m/z 1551.7357 u) which exhibits a modified b5* fragment 

ion, but not a b2* fragment ion, suggesting the MDI is located on the sequence “QKA”, and 

most reasonably exists as a crosslink between Glu413 and Lys414. This observation is in 

good agreement with a previous in vitro study, which suggested that the dilysine located at 

Lys413–414 in human albumin is a preferred diisocyanate binding target (Hettick & Siegel, 

2012). In mouse, this site is not a dilysine as the residue at position 413 is a glutamine, not a 

lysine. Conjugation at this site in mouse suggests that the dilysine motif is not essential for 

the reaction. Although we previously hypothesized that sidechain interaction between the 

two lysines of a dilysine motif results in a lower pKa for the sidechain primary amine 

making reaction at that site more favorable, this data suggests that lysine and glutamine may 

be able to interact in a similar fashion to dilysine.
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Label-free quantitative proteomics of bronchoalveolar lavage fluid following exposures

In addition to characterizing the chemical haptenation of self-protein such as serum albumin 

following MDI exposure, the second goal of the present proteomics-based study was to 

examine changes in relative expression of the protein content of the cellular population of 

the BAL fluid in response to MDI exposure. In order to maximize sequence coverage across 

the broad range of protein molecular weights and concentrations, one-dimensional SDS-

PAGE was chosen as a protein pre-fractionation method prior to tandem MS analysis. Such 

“GeLC-MS” methods are robust and reproducible for both protein identification and 

quantification (Dzieciatkowska et al., 2014). Tandem mass spectrometry-based protein 

identification resulted in the identification 398 (control group), 261 (4 h post-exposure 

group) and 253 (24 h post-exposure group) unique proteins, allowing for a direct comparison 

of 196 (control versus 4 h) and 203 (control versus 24 h) protein expression levels. Proteins 

were quantified using a label-free “NSAF” approach (Zybailov et al., 2006). An NSAF-

based label-free quantitation approach has previously been demonstrated to produce the 

most reproducible results across both technical and biological replicates (McIlwain et al., 

2012). Briefly, the NSAF is the number of peptides identified by tandem mass spectrometry, 

normalized to the length of the protein, and expressed as a fraction of the total normalized 

peptides identified across all proteins. NSAF values for individual proteins may then be 

compared across treatment groups. Proteins that exhibit a greater than two-fold change in 

NSAF are considered significant and are reported in Table 1 (control versus 4 h) and Table 2 

(control versus 24 h). Although protein NSAF values corresponding to less than two-fold 

up- or down regulation have been demonstrated to be statistically significant, two-fold 

changes are commonly accepted reporting criteria in label-free quantitation studies 

(Zybailov et al., 2006).

The most dramatically upregulated protein following aerosol exposure to MDI is 

cytochrome P450 2F2. Cytochrome P450 is a large protein superfamily of hemecontaining 

enzymes that metabolize a broad range of endogenous and exogenous compounds. The 

isoform identified here, cytochrome P450 2F2, is expressed in the respiratory tract and is 

active toward many pulmonary xenobiotic compounds including small organics such as 

naphthalene, styrene, benzene and more; however, the precise role that cytochrome P450 

2F2 plays in chemical toxicity has been difficult to elucidate (Li et al., 2011). Cytochrome 

P450 2F2 is able to metabolically activate several of these toxicants to reactive epoxides, 

which results in lung injury (Buckpitt et al., 1995). To date, there are no known endogenous 

compounds metabolized by cytochrome P450 2F2 (Zhang & Ding, 2008). As a strong 

electrophile, the hazard of MDI exposure has long been considered its ability to haptenate 

self-protein; however, if MDI exposure is able to induce cytochrome P450 2F2 expression 

and is able to be metabolized to some reactive intermediate, that would warrant future 

mechanistic study.

Other proteins upregulated both 4 and 24 h post exposure include argininosuccinate 

synthase, a key component of the citrulline-NO cycle, that has been shown to be upregulated 

by pro-inflammatory cytokines such as IL-1β, TNF-α and IFN-γ (Husson et al., 2003). Of 

interest from an immunology perspective is the upregulation of endoplasmin, a versatile heat 

shock protein of the innate and adaptive immune systems. It can both bind and carry 
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peptides to major histocompatibility complex class I proteins of the dendritic and other 

antigen presenting cells, but it can also function like a cytokine by inducing dendritic cells to 

produce IL-12 and TNF-α. As Schild described it, “they not only report the murder, they 

also provide a description of the suspect, thereby helping the immune system to discriminate 

between self and nonself, or between self and altered-self, respectively” (Schild & 

Rammensee, 2000). Only one protein that is significantly upregulated at 4 h post exposure is 

not still upregulated 24 h later, vimentin. Vimentin is an intermediate filament protein 

expressed in mesenchymal cells. It also plays a role in aggresome formation, forming a cage 

surrounding a core of aggregated protein. This has been proposed as a general response of 

cells that occurs when the capacity of the proteasome is exceeded by aggregation-prone 

misfolded protein (Johnston et al., 1998). In this experiment, relatively large micrometer-

sized particulates of MDI are deposited in the airway. Based on the well-documented 

tendency of diisocyanates to form high molecular weight covalently crosslinked complexes 

with self-proteins, it is possible that the formation of such protein-MDI complexes or 

perhaps the MDI particles themselves, in the lung are recognized as non-self or damaged-

self leading to vimentin aggresome formation as part of the acute host response.

Proteins downregulated in response to MDI aerosol exposure include those involved in actin 

assembly and cell mobility processes, such as chloride intracellular channel protein 3, ADP 

ribosylation factor 3, gelsolin, calpain, dihydropyrimidinase-related protein 2 and annexin. 

Furthermore, annexin A1 plays a role in anti-inflammatory processes. Other proteins, such 

as aldehyde dehydrogenase, selenium binding protein 2 and glutathione S transferase play a 

role in metabolism or detoxification of xenobiotics. Taken in total, the quantitative 

proteomics data suggest that in the 24 h immediately following an MDI aerosol respiratory 

exposure, cellular response processes such as inflammation, oxidative stress, detoxification 

and early immune processing are increased, whereas cell adhesion, mobility and actin 

assembly are decreased.

Conclusion

A nose-only dry aerosol exposure apparatus was designed and constructed to expose a 

BALB/c mouse model to respirable particulates of MDI. Following exposures, MDI-

conjugated serum albumin hapten-protein complexes were identified in both the cellular 

fraction and cell-free supernatant of BALF. MDI conjugation was confirmed on Lys414 and 

Lys525, the second lysine of a dilysine motif conserved in human serum albumin. These 

represent the first site-specific determination of MDI conjugation to serum albumin from an 

in vivo study, and suggest possible candidate biomarkers that should be validated. Label-free 

quantitative proteomics of the cellular fraction of the BALF demonstrated a subset of up- 

and downregulated proteins, suggestive of increased inflammation, oxidative stress, 

chemical detoxification and early immune response processes. Taken in total, the current 

study is directly responsive to previously-established knowledge gaps and research priorities 

within the field of isocyanates and human health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nose-only MDI aerosol inhalation exposure system. (A) House supply air. (B) Diluent air. 

(C) Heated humidification element. (D) Wright dust feeder. (E) 20 L elutriator. (F) Nose-

only inhalation exposure manifold. (G) Mouse restraint. (H) HEPA exhaust filter. (I) Mass 

flow meter. (J) Portable dust monitor.
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Figure 2. 
SDS-PAGE anti-MDI Western blot of bronchoalveolar lavage fluid. BALF cell pellet lysate 

or supernatant from control air-exposed mice 4 h post-exposure and MDI-exposed mice 4- 

or 24-h post-exposure are indicated by “−, +4, +24”, respectively. Positive control MDI-

conjugated mouse serum albumin (20:1 MDI:albumin mol ratio) is indicated by “PC”. 

Arrow indicates serum albumin band.
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Figure 3. 
Sequence alignment of serum albumins. Mouse serum albumin (mus musculus, P07724) and 

human serum albumin (homo sapiens, P02768, in italics). MDI conjugation sites Lys414 and 

Lys524-525 are bolded.
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Figure 4. 
High-resolution peptide mass map mirror display of mouse serum albumin. Control (top) 

and MDI-exposed (bottom) peptide mass maps are reflected about the m/z axis. Arrows 

indicate peptides at m/z (1) 1100.66 u and (2) 1324.66 u, the unmodified and MDI-

conjugated forms of peptide T61-62, respectively.
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Table 1

Differentially expressed proteins identified in the cellular fraction of bronchoalveolar lavage fluid of mice 

exposed to MDI aerosol, 4 h post exposure.

Accession Description MW (Da) Fold change Up/down

P33267 Cytochrome P450 2F2 55 913 +4.08 Up

Q3UJ34 Argininosuccinate synthase 46 555 +4.36 Up

P08113 Endoplasmin 92 418 +3.22 Up

Q3U7H1 Napsin A 45 515 +2.95 Up

Q8CGP7 Histone H2A 14 140 +2.89 Up

Q64524 Histone H2B 13 984 +2.62 Up

Q542G9 Annexin 38 651 +2.55 Up

Q5FWJ3 Vimentin 53 655 +2.44 Up

P09041 Phosphoglycerate kinase 2 44 824 +2.43 Up

D3YYR8 Serotransferrin 25 658 +2.22 Up

A0A087WRB4 Tubulin alpha 4A 11 094 +2.12 Up

Q9CPN9 Protein 2210010C04Rik 26 404 +2.04 Up

O08529 Calpain 2 catalytic subunit 79 821 −2.02 Down

P16858 Glyceraldehyde 3 phosphate dehydrogenase 35 787 −2.07 Down

A6PWS5 Gelsolin 28 042 −2.09 Down

Q8BSL7 ADP ribosylation factor 2 20 732 −2.33 Down

P63101 14 3 3 protein zeta delta 27 753 −2.40 Down

Q5SQ27 MCG140354 46 054 −2.90 Down

P61205 ADP ribosylation factor 3 20 587 −2.97 Down

V9GXA7 Protein Gm15294 12 957 −3.29 Down

O08553 Dihydropyrimidinase-related protein 2 62 238 −3.33 Down

P10107 Annexin A1 38 709 −3.47 Down

D3YW48 Calpain small subunit 1 25 294 −5.80 Down

O08709 Periredoxin 6 24 854 −6.09 Down

Xenobiotica. Author manuscript; available in PMC 2018 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hettick et al. Page 21

Table 2

Differentially expressed proteins identified in the cellular fraction of bronchoalveolar lavage fluid of mice 

exposed to MDI aerosol, 24 h post exposure.

Accession Description MW (Da) Fold change Up/Down

P33267 Cytochrome P450 2F2 55 913 +4.97 Up

Q3UJ34 Argininosuccinate synthase 46 555 +4.36 Up

P08113 Endoplasmin 92 418 +3.07 Up

Q3U7H1 Napsin A 45 515 +2.91 Up

Q64524 Histone H2B 13 984 +2.51 Up

Q8CGP7 Histone H2A 14 140 +2.44 Up

P09041 Phosphoglycerate kinase 2 44 824 +2.43 Up

Q9D7P7 Chloride intracellular channel protein 3 26 828 −2.01 Down

P61205 ADP ribosylation factor 3 20 587 −2.03 Down

Q63836 Selenium binding protein 2 54 576 −2.04 Down

A0A0J9YUJ8 Gelsolin 18 727 −2.10 Down

Q9Z1R9 MCG124046 26 117 −2.23 Down

O35945 Aldehyde dehydrogenase 54 552 −2.30 Down

D3YYI5 Glyceraldehye 3 phosphate dehydrogenase 36 280 −2.30 Down

O08529 Calpain 2 79 821 −2.35 Down

P29699 Alpha 2 HS glycoprotein 37 301 −2.36 Down

A2AE89 Glutathione S transferase 23 520 −2.55 Down

O08553 Dihydropyrimidinase-related protein 2 62 238 −3.23 Down

P10107 Annexin A1 38 709 −3.56 Down

O88456 Calpain small subunit 28 444 −12.0 Down
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